1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
//! Useful **type operators** that are not defined in `core::ops`. //! use {Bit, NInt, NonZero, PInt, UInt, UTerm, Unsigned, Z0}; /// A **type operator** that ensures that `Rhs` is the same as `Self`, it is mainly useful /// for writing macros that can take arbitrary binary or unary operators. /// /// `Same` is implemented generically for all types; it should never need to be implemented /// for anything else. /// /// Note that Rust lazily evaluates types, so this will only fail for two different types if /// the `Output` is used. /// /// # Example /// ```rust /// use typenum::{Same, U4, U5, Unsigned}; /// /// assert_eq!(<U5 as Same<U5>>::Output::to_u32(), 5); /// /// // Only an error if we use it: /// # #[allow(dead_code)] /// type Undefined = <U5 as Same<U4>>::Output; /// // Compiler error: /// // Undefined::to_u32(); /// ``` pub trait Same<Rhs = Self> { /// Should always be `Self` type Output; } impl<T> Same<T> for T { type Output = T; } /// A **type operator** that returns the absolute value. /// /// # Example /// ```rust /// use typenum::{Abs, N5, Integer}; /// /// assert_eq!(<N5 as Abs>::Output::to_i32(), 5); /// ``` pub trait Abs { /// The absolute value. type Output; } impl Abs for Z0 { type Output = Z0; } impl<U: Unsigned + NonZero> Abs for PInt<U> { type Output = Self; } impl<U: Unsigned + NonZero> Abs for NInt<U> { type Output = PInt<U>; } /// A **type operator** that provides exponentiation by repeated squaring. /// /// # Example /// ```rust /// use typenum::{Pow, N3, P3, Integer}; /// /// assert_eq!(<N3 as Pow<P3>>::Output::to_i32(), -27); /// ``` pub trait Pow<Exp> { /// The result of the exponentiation. type Output; /// This function isn't used in this crate, but may be useful for others. /// It is implemented for primitives. /// /// # Example /// ```rust /// use typenum::{Pow, U3}; /// /// let a = 7u32.powi(U3::new()); /// let b = 7u32.pow(3); /// assert_eq!(a, b); /// /// let x = 3.0.powi(U3::new()); /// let y = 27.0; /// assert_eq!(x, y); /// ``` fn powi(self, exp: Exp) -> Self::Output; } macro_rules! impl_pow_f { ($t: ty) => ( impl Pow<UTerm> for $t { type Output = $t; #[inline] fn powi(self, _: UTerm) -> Self::Output { 1.0 } } impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for $t { type Output = $t; // powi is unstable in core, so we have to write this function ourselves. // copied from num::pow::pow #[inline] fn powi(self, _: UInt<U, B>) -> Self::Output { let mut exp = <UInt<U, B> as Unsigned>::to_u32(); let mut base = self; if exp == 0 { return 1.0 } while exp & 1 == 0 { base *= base; exp >>= 1; } if exp == 1 { return base } let mut acc = base.clone(); while exp > 1 { exp >>= 1; base *= base; if exp & 1 == 1 { acc *= base.clone(); } } acc } } impl Pow<Z0> for $t { type Output = $t; #[inline] fn powi(self, _: Z0) -> Self::Output { 1.0 } } impl<U: Unsigned + NonZero> Pow<PInt<U>> for $t { type Output = $t; // powi is unstable in core, so we have to write this function ourselves. // copied from num::pow::pow #[inline] fn powi(self, _: PInt<U>) -> Self::Output { let mut exp = U::to_u32(); let mut base = self; if exp == 0 { return 1.0 } while exp & 1 == 0 { base *= base; exp >>= 1; } if exp == 1 { return base } let mut acc = base.clone(); while exp > 1 { exp >>= 1; base *= base; if exp & 1 == 1 { acc *= base.clone(); } } acc } } ); } impl_pow_f!(f32); impl_pow_f!(f64); macro_rules! impl_pow_i { () => (); ($t: ty $(, $tail:tt)*) => ( impl Pow<UTerm> for $t { type Output = $t; #[inline] fn powi(self, _: UTerm) -> Self::Output { 1 } } impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for $t { type Output = $t; #[inline] fn powi(self, _: UInt<U, B>) -> Self::Output { self.pow(<UInt<U, B> as Unsigned>::to_u32()) } } impl Pow<Z0> for $t { type Output = $t; #[inline] fn powi(self, _: Z0) -> Self::Output { 1 } } impl<U: Unsigned + NonZero> Pow<PInt<U>> for $t { type Output = $t; #[inline] fn powi(self, _: PInt<U>) -> Self::Output { self.pow(U::to_u32()) } } impl_pow_i!($($tail),*); ); } impl_pow_i!(u8, u16, u32, u64, usize, i8, i16, i32, i64, isize); #[cfg(feature = "i128")] impl_pow_i!(u128, i128); #[test] fn pow_test() { use consts::*; let z0 = Z0::new(); let p3 = P3::new(); let u0 = U0::new(); let u3 = U3::new(); macro_rules! check { ($x:ident) => ( assert_eq!($x.powi(z0), 1); assert_eq!($x.powi(u0), 1); assert_eq!($x.powi(p3), $x*$x*$x); assert_eq!($x.powi(u3), $x*$x*$x); ); ($x:ident, $f:ident) => ( assert!((<$f as Pow<Z0>>::powi(*$x, z0) - 1.0).abs() < ::core::$f::EPSILON); assert!((<$f as Pow<U0>>::powi(*$x, u0) - 1.0).abs() < ::core::$f::EPSILON); assert!((<$f as Pow<P3>>::powi(*$x, p3) - $x*$x*$x).abs() < ::core::$f::EPSILON); assert!((<$f as Pow<U3>>::powi(*$x, u3) - $x*$x*$x).abs() < ::core::$f::EPSILON); ); } for x in &[0i8, -3, 2] { check!(x); } for x in &[0u8, 1, 5] { check!(x); } for x in &[0usize, 1, 5, 40] { check!(x); } for x in &[0isize, 1, 2, -30, -22, 48] { check!(x); } for x in &[0.0f32, 2.2, -3.5, 378.223] { check!(x, f32); } for x in &[0.0f64, 2.2, -3.5, -2387.2, 234.22] { check!(x, f64); } } /// A **type operator** for comparing `Self` and `Rhs`. It provides a similar functionality to /// the function /// [`core::cmp::Ord::cmp`](https://doc.rust-lang.org/nightly/core/cmp/trait.Ord.html#tymethod.cmp) /// but for types. /// /// # Example /// ```rust /// use typenum::{Cmp, Ord, N3, P2, P5}; /// use std::cmp::Ordering; /// /// assert_eq!(<P2 as Cmp<N3>>::Output::to_ordering(), Ordering::Greater); /// assert_eq!(<P2 as Cmp<P2>>::Output::to_ordering(), Ordering::Equal); /// assert_eq!(<P2 as Cmp<P5>>::Output::to_ordering(), Ordering::Less); pub trait Cmp<Rhs = Self> { /// The result of the comparison. It should only ever be one of `Greater`, `Less`, or `Equal`. type Output; } /// A **type operator** that gives the length of an `Array` or the number of bits in a `UInt`. pub trait Len { /// The length as a type-level unsigned integer. type Output: ::Unsigned; /// This function isn't used in this crate, but may be useful for others. fn len(&self) -> Self::Output; } /// Division as a partial function. This **type operator** performs division just as `Div`, but is /// only defined when the result is an integer (i.e. there is no remainder). pub trait PartialDiv<Rhs = Self> { /// The type of the result of the division type Output; /// Method for performing the division fn partial_div(self, _: Rhs) -> Self::Output; } /// A **type operator** that returns the minimum of `Self` and `Rhs`. pub trait Min<Rhs = Self> { /// The type of the minimum of `Self` and `Rhs` type Output; /// Method returning the minimum fn min(self, rhs: Rhs) -> Self::Output; } /// A **type operator** that returns the maximum of `Self` and `Rhs`. pub trait Max<Rhs = Self> { /// The type of the maximum of `Self` and `Rhs` type Output; /// Method returning the maximum fn max(self, rhs: Rhs) -> Self::Output; } use Compare; /// A **type operator** that returns `True` if `Self < Rhs`, otherwise returns `False`. pub trait IsLess<Rhs = Self> { /// The type representing either `True` or `False` type Output: Bit; /// Method returning `True` or `False`. fn is_less(self, rhs: Rhs) -> Self::Output; } use private::IsLessPrivate; impl<A, B> IsLess<B> for A where A: Cmp<B> + IsLessPrivate<B, Compare<A, B>>, { type Output = <A as IsLessPrivate<B, Compare<A, B>>>::Output; fn is_less(self, _: B) -> Self::Output { unsafe { ::core::mem::uninitialized() } } } /// A **type operator** that returns `True` if `Self == Rhs`, otherwise returns `False`. pub trait IsEqual<Rhs = Self> { /// The type representing either `True` or `False` type Output: Bit; /// Method returning `True` or `False`. fn is_equal(self, rhs: Rhs) -> Self::Output; } use private::IsEqualPrivate; impl<A, B> IsEqual<B> for A where A: Cmp<B> + IsEqualPrivate<B, Compare<A, B>>, { type Output = <A as IsEqualPrivate<B, Compare<A, B>>>::Output; fn is_equal(self, _: B) -> Self::Output { unsafe { ::core::mem::uninitialized() } } } /// A **type operator** that returns `True` if `Self > Rhs`, otherwise returns `False`. pub trait IsGreater<Rhs = Self> { /// The type representing either `True` or `False` type Output: Bit; /// Method returning `True` or `False`. fn is_greater(self, rhs: Rhs) -> Self::Output; } use private::IsGreaterPrivate; impl<A, B> IsGreater<B> for A where A: Cmp<B> + IsGreaterPrivate<B, Compare<A, B>>, { type Output = <A as IsGreaterPrivate<B, Compare<A, B>>>::Output; fn is_greater(self, _: B) -> Self::Output { unsafe { ::core::mem::uninitialized() } } } /// A **type operator** that returns `True` if `Self <= Rhs`, otherwise returns `False`. pub trait IsLessOrEqual<Rhs = Self> { /// The type representing either `True` or `False` type Output: Bit; /// Method returning `True` or `False`. fn is_less_or_equal(self, rhs: Rhs) -> Self::Output; } use private::IsLessOrEqualPrivate; impl<A, B> IsLessOrEqual<B> for A where A: Cmp<B> + IsLessOrEqualPrivate<B, Compare<A, B>>, { type Output = <A as IsLessOrEqualPrivate<B, Compare<A, B>>>::Output; fn is_less_or_equal(self, _: B) -> Self::Output { unsafe { ::core::mem::uninitialized() } } } /// A **type operator** that returns `True` if `Self != Rhs`, otherwise returns `False`. pub trait IsNotEqual<Rhs = Self> { /// The type representing either `True` or `False` type Output: Bit; /// Method returning `True` or `False`. fn is_not_equal(self, rhs: Rhs) -> Self::Output; } use private::IsNotEqualPrivate; impl<A, B> IsNotEqual<B> for A where A: Cmp<B> + IsNotEqualPrivate<B, Compare<A, B>>, { type Output = <A as IsNotEqualPrivate<B, Compare<A, B>>>::Output; fn is_not_equal(self, _: B) -> Self::Output { unsafe { ::core::mem::uninitialized() } } } /// A **type operator** that returns `True` if `Self >= Rhs`, otherwise returns `False`. pub trait IsGreaterOrEqual<Rhs = Self> { /// The type representing either `True` or `False` type Output: Bit; /// Method returning `True` or `False`. fn is_greater_or_equal(self, rhs: Rhs) -> Self::Output; } use private::IsGreaterOrEqualPrivate; impl<A, B> IsGreaterOrEqual<B> for A where A: Cmp<B> + IsGreaterOrEqualPrivate<B, Compare<A, B>>, { type Output = <A as IsGreaterOrEqualPrivate<B, Compare<A, B>>>::Output; fn is_greater_or_equal(self, _: B) -> Self::Output { unsafe { ::core::mem::uninitialized() } } } /** A convenience macro for comparing type numbers. Use `op!` instead. Due to the intricacies of the macro system, if the left-hand operand is more complex than a simple `ident`, you must place a comma between it and the comparison sign. For example, you can do `cmp!(P5 > P3)` or `cmp!(typenum::P5, > typenum::P3)` but not `cmp!(typenum::P5 > typenum::P3)`. The result of this comparison will always be one of `True` (aka `B1`) or `False` (aka `B0`). # Example ```rust #[macro_use] extern crate typenum; use typenum::consts::*; use typenum::Bit; fn main() { type Result = cmp!(P9 == op!(P1 + P2 * (P2 - N2))); assert_eq!(Result::to_bool(), true); } ``` */ #[deprecated(since = "1.9.0", note = "use the `op!` macro instead")] #[macro_export] macro_rules! cmp { ($a:ident < $b:ty) => ( <$a as $crate::IsLess<$b>>::Output ); ($a:ty, < $b:ty) => ( <$a as $crate::IsLess<$b>>::Output ); ($a:ident == $b:ty) => ( <$a as $crate::IsEqual<$b>>::Output ); ($a:ty, == $b:ty) => ( <$a as $crate::IsEqual<$b>>::Output ); ($a:ident > $b:ty) => ( <$a as $crate::IsGreater<$b>>::Output ); ($a:ty, > $b:ty) => ( <$a as $crate::IsGreater<$b>>::Output ); ($a:ident <= $b:ty) => ( <$a as $crate::IsLessOrEqual<$b>>::Output ); ($a:ty, <= $b:ty) => ( <$a as $crate::IsLessOrEqual<$b>>::Output ); ($a:ident != $b:ty) => ( <$a as $crate::IsNotEqual<$b>>::Output ); ($a:ty, != $b:ty) => ( <$a as $crate::IsNotEqual<$b>>::Output ); ($a:ident >= $b:ty) => ( <$a as $crate::IsGreaterOrEqual<$b>>::Output ); ($a:ty, >= $b:ty) => ( <$a as $crate::IsGreaterOrEqual<$b>>::Output ); }