1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
//! `static` friendly data structures that don't require dynamic memory allocation
//!
//! The core principle behind `heapless` is that its data structures are backed by a *static* memory
//! allocation. For example, you can think of `heapless::Vec` as an alternative version of
//! `std::Vec` with fixed capacity and that can't be re-allocated on the fly (e.g. via `push`).
//!
//! All `heapless` data structures store their memory allocation *inline* and specify their capacity
//! via their type parameter `N`. This means that you can instantiate a `heapless` data structure on
//! the stack, in a `static` variable, or even in the heap.
//!
//! ```
//! use heapless::Vec; // fixed capacity `std::Vec`
//! use heapless::consts::U8; // type level integer used to specify capacity
//!
//! // on the stack
//! let mut xs: Vec<u8, U8> = Vec::new(); // can hold up to 8 elements
//! xs.push(42).unwrap();
//! assert_eq!(xs.pop(), Some(42));
//!
//! // in a `static` variable
//! // static mut XS: Vec<u8, U8> = Vec::new(); // requires feature `const-fn`
//!
//! // work around
//! static mut XS: Option<Vec<u8, U8>> = None;
//! unsafe { XS = Some(Vec::new()) };
//! let xs = unsafe { XS.as_mut().unwrap() };
//!
//! xs.push(42);
//! assert_eq!(xs.pop(), Some(42));
//!
//! // in the heap (though kind of pointless because no reallocation)
//! let mut ys: Box<Vec<u8, U8>> = Box::new(Vec::new());
//! ys.push(42).unwrap();
//! assert_eq!(ys.pop(), Some(42));
//! ```
//!
//! Because they have fixed capacity `heapless` data structures don't implicitly reallocate. This
//! means that operations like `heapless::Vec.push` are *truly* constant time rather than amortized
//! constant time with potentially unbounded (depends on the allocator) worst case execution time
//! (which is bad / unacceptable for hard real time applications).
//!
//! `heapless` data structures don't use a memory allocator which means no risk of an uncatchable
//! Out Of Memory (OOM) condition (which defaults to abort) while performing operations
//! on them. It's certainly possible to run out of capacity while growing `heapless` data
//! structures, but the API lets you handle this possibility by returning a `Result` on operations
//! that may exhaust the capacity of the data structure.
//!
//! List of currently implemented data structures:
//!
//! - [`BinaryHeap`](binary_heap/struct.BinaryHeap.html) -- priority queue
//! - [`IndexMap`](struct.IndexMap.html) -- hash table
//! - [`IndexSet`](struct.IndexSet.html) -- hash set
//! - [`LinearMap`](struct.LinearMap.html)
//! - [`Queue`](spsc/struct.Queue.html) -- single producer single consumer lockless queue
//! - [`String`](struct.String.html)
//! - [`Vec`](struct.Vec.html)
//!
//!
//! In order to target the Rust stable toolchain, there are some feature gates.
//! The features need to be enabled in `Cargo.toml` in order to use them.
//! Once the underlaying features in Rust are stable,
//! these feature gates might be activated by default.
//!
//! Example of `Cargo.toml`:
//!
//! ```text
//! ...
//! [dependencies]
//! heapless = { version = "0.4.0", features = ["const-fn"] }
//! ...
//!
//! ```
//!
//! Currently the following features are availbale and not active by default:
//!
//! - `"const-fn"` -- Enable the nightly `const_fn` feature and make most `new` methods `const`.
//!      This way they can be used to initialize static memory at compile time.
//!

#![allow(warnings)]
#![deny(missing_docs)]
#![deny(warnings)]
#![cfg_attr(feature = "const-fn", feature(const_fn))]
#![cfg_attr(feature = "const-fn", feature(untagged_unions))]
#![no_std]

extern crate generic_array;
extern crate hash32;
#[cfg(test)]
extern crate std;

#[cfg(feature = "serde")]
extern crate serde;

#[macro_use]
mod const_fn;

pub use binary_heap::BinaryHeap;
pub use generic_array::typenum::consts;
pub use generic_array::ArrayLength;
pub use indexmap::{FnvIndexMap, IndexMap};
pub use indexset::{FnvIndexSet, IndexSet};
pub use linear_map::LinearMap;
pub use string::String;
pub use vec::Vec;

mod cfail;
mod indexmap;
mod indexset;
mod linear_map;
mod string;
mod vec;

#[cfg(feature = "serde")]
mod de;
#[cfg(feature = "serde")]
mod ser;

pub mod binary_heap;
pub mod spsc;

mod __core;
mod sealed;